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Abstract—Writing UI tests manually requires significant effort.
Several approaches have tried to address this problem in mobile
apps: by exploiting the similarities of different apps within the
same domain on a single platform, they have shown that it
is possible to transfer tests that exercise similar functionality
between the apps. A related recent technique enables transfer of
UI tests uni-directionally, from an open-source iOS app to the
same app implemented for Android. This paper presents MAPIT,
a technique that expands existing work in three important ways:
(1) it enables bi-directional UI test transfer between pairs of
“sibling” Android and iOS apps; (2) it does not assume that the
apps’ source code is available; (3) it is capable of transferring
tests containing oracles in addition to UI events. MAPIT runs
existing tests on a “source” app and builds a partial model
of the app corresponding to each test. The model comprises
the app’s screenshots, obtainable properties of each screenshot’s
constituent elements, and labeled transitions between the screen-
shots. MAPIT uses this model to determine the corresponding
information on the “target” app and generates an equivalent test,
via a novel approach that leverages computer vision and NLP.
Our evaluation on a diverse set of widely used, closed-source
sibling Android and iOS apps shows that MAPIT is feasible,
accurate, and useful in transferring UI tests across platforms.

I. INTRODUCTION

Writing UI tests manually requires significant effort. This is
an especially acute problem on mobile platforms given their
rapid app-development lifecycle. A popular alternative is to
automatically generate the UI tests, e.g., by relying on model-
based or random testing [1], [2]. While these approaches have
been shown effective for generating UI tests with high code
coverage, they cannot generate usage-based tests that target an
app’s specific functionality [3], such as login, sign-up, make
reservation, etc. It has been shown that such usage-based tests
are highly valuable to developers and testers [3], [4].

Recent work has demonstrated the possibility of generating
usage-based tests through test reuse across apps within a
single domain (e.g., news, shopping, etc.) [5], [3], [6], [7],
[8], [9], [10]. Guided by this insight, prior work has primarily
focused on transferring existing usage-based tests to a new
app within the same domain on a single platform [5], [6], [8],
[7], [3], [10]. Specifically, these approaches leverage existing
usage-based tests from a source Android app to automatically
generate equivalent tests for a target Android app.

A largely unexplored variant of this problem is transferring
tests written for an app implemented on one platform (e.g.,
Android), to the same app implemented for another platform
(e.g., iOS). We refer to such pairs of apps as sibling apps.
Cross-platform transfer has unique challenges as compared to
test transfer within Android alone. First, different platforms
employ different technologies, such as various app-development
languages and frameworks, which add significant complexity
to the problem. Second, iOS is a closed-source platform, which
has led to fewer and more limited tools for analyzing iOS apps
compared to Android. Finally, most iOS apps themselves are
closed-source, making any code-based analysis impossible.

The closest attempt at this problem is TestMig [11], which
has addressed uni-directional test transfer for sibling iOS and
Android apps. TestMig has three important limitations. First,
it assumes the availability of both the Android and iOS apps’
source code, which, as mentioned, is especially unlikely for
iOS apps. Second, TestMig only covers transferring tests in
one direction (iOS to Android). Supporting the other direction
(Android to iOS) is inherently challenging: unlike Android, for
which many open-source reverse engineering tools are readily
available (e.g., bytecode decompilers, Soot [12], Gator [13]),
iOS is a closed platform with a smaller developer base and
static analyses that existing test transfer techniques rely on are
not an option. Third, TestMig only targets UI events, but cannot
transfer test oracles or system events. Oracles are responsible
for evaluating the outcomes of tests and are therefore an
essential part of usage-based testing. Inability to migrate system
events additionally limits the set of test cases that can be
transferred. For instance, navigating to the previous screen is
an Andriod system event that frequently occurs in UI tests.

To address these limitations, we have developed MAPIT,
a novel approach for bi-directional transfer of usage-based
tests across different mobile platforms, with no source code
required on either platform. MAPIT is also the first approach
capable of transferring oracle events and system events across
mobile platforms. Specifically, MAPIT takes as input (1) the
binaries of the sibling apps-under-test implemented for both
iOS and Android as well as the (2) pre-existing tests for one
of these platforms, and automatically generates equivalent
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tests for the other platform. The transfer process comprises
two major phases. First, MAPIT dynamically extracts a GUI
model of the app on the source platform while executing the
source test. The GUI model contains the app screen bitmaps,
information regarding the relevant widgets contained on each
screen (e.g., widget images and descriptive attributes), and the
events that cause transitions from one app screen to the next.
Second, based on this GUI model, the source test is migrated
to the target platform by mapping the GUI widgets from the
source app to the most similar widgets in the sibling app. This
is done using a novel approach that combines computer vision
and NLP techniques, and therefore leverages both visual and
textual features of apps for mapping GUI widgets. This process
additionally recognizes and transfers oracle and system events.

We empirically evaluated MAPIT on 25 pairs of sibling
Android and iOS apps spanning 5 app categories. For each
pair of sibling apps, we transferred 4 test cases corresponding
to representative usage scenarios in both directions to evaluate
MAPIT’s ability to correctly transfer both (1) individual events
and test oracles, as well as (2) complete tests. In total, our
evaluation yielded bidirectional transfers of 200 test cases,
including 828 UI events, 176 oracle events, and 50 system
events. Overall, MAPIT achieved over 75% event mapping ac-
curacy and showed to be useful in reducing the required manual
effort by over 55%. Furthermore, 58 (29%) complete test cases
were transferred correctly, eliminating the manual effort. Note
that, even if a test is not completely transferred correctly, the
reduction in manual effort MAPIT affords is proportional to the
fraction of individual events that were successfully transferred.
In those cases, the developer can complete the partially
transferred test by modifying the events tagged as incorrectly
transferred. Furthermore, in our evaluation of MAPIT’s accu-
racy when transferring individual events, we compared our
composite mapping technique against only textual or only
visual information (as used in previous cross-platform transfer
techniques [11], [14]) and showed that our composite approach
outperforms the previous techniques in nearly all cases.

This paper makes the following contributions:
• A novel technique for bi-directional, cross-platform trans-

fer of usage-based tests for closed-source apps.
• A novel UI widget mapping solution that combines

pluggable computer vision and NLP techniques.
• An extensible approach for transferring test oracles and

system events across mobile platforms.
• An empirical evaluation on 25 closed source real-world

apps, and a public repository with MAPIT’s implementa-
tion and artifacts to foster future research [15].

Section II presents our work’s background via an example
and introduces the key terminology. Section III presents our
approach and Section IV its empirical evaluation. Section V
overviews the related work. Section VII concludes the paper.

II. BACKGROUND AND TERMINOLOGY

Figure 1 shows the screenshots of the login pages of Etsy,
a popular shopping app, on Android (left) and iOS (right).

Although the two login pages are not identical, they share sig-
nificant similarities in (1) the appearances of their UI widgets,
(2) the textual data describing these widgets, and (3) the wid-
gets’ position on the respective screens. Such, and even greater,
pairwise similarities between “sibling” apps are common.

Let us assume that a test of Etsy’s login functionality exists
on Android, and that we want to transfer it to iOS. The widgets
involved in the login test are framed and labeled for both
platforms in Figure 1. We will use this scenario to introduce
the terms and describe the concepts relevant to our approach.

The source app is the app with existing tests that are to
be transferred to the target app. Source platform and target
platform are the platforms on which the source and target
apps run, respectively. The source test is the existing test to
be transferred, while the target test is the transferred test. A
ground-truth test is an existing test for the target app that tests
the same functionality as the transferred source test. A test
scenario is an informal description of a test case in natural
language. For instance, the login test scenario consists of
entering username and password and clicking the “login” button.
A ground-truth test is thus used for evaluating the success of
a test transfer corresponding to the same test scenario in the
two sibling apps. Note that the source test that is transferred,
e.g., from iOS to Android, serves the ground-truth test when
transferring the same test scenario in the opposite direction.

The contents of a given screen of an app form an app
state. Equivalent states on the source and target apps are the
states intended to provide the same or equivalent functionalities,
usually with similar-looking UIs. For instance, Figure 1 shows
two equivalent states of the Etsy app on Android and iOS
since they both target login functionality.

An event is defined as a 4-tuple (a, w, t, o). Each event has
one required element: a, which is the type of action associated
with the event. The remaining three elements are optional: w is
the UI widget; t is the input text associated with the event, such
as text entered by the keyboard; and o is the oracle type. MAPIT
supports three types of events: (1) UI events, for which the sup-
ported action types are click and keyboard input; (2) oracle
events, which are the assertions in the UI tests that determine

a2

a1

a3

b1

b2

b3

b4

a4

Fig. 1: Login pages of Etsy on Android (left) and iOS (right).
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Fig. 2: High-level workflow of MAPIT.

whether a test should pass or fail, for which the supported action
type is oracle; and (3) system events, for which the supported
action types are back and enter. Note that w is optional since
not all events have an associated widget (e.g., system events).

If the event is an oracle event, o contains the specific oracle
type. To demonstrate MAPIT’s ability to transfer oracles,
in this paper we focus on a representative cross-section of
assertion types identified by prior work [5], [8], which will
be detailed in Section III.

As an example, the UI event of entering the username “Usr 1”
for logging into Etsy on Android is represented as a 4-tuple
(a:‘‘keyboard input’’, w:a1, t:‘‘Usr_1’’, o:−).

Finally, each UI test consists of a sequence of 4-tuple events.

III. APPROACH

Figure 2 shows an overview of MAPIT’s workflow. The
input to MAPIT is three-fold: (1) Source Test written for
the source platform, (2) Source App that runs on the source
platform, and (3) its sibling, Target App that runs on the target
platform. MAPIT automatically transfers the Source Test
through two major phases: (1) Source Data Extraction, during
which the data needed for the test transfer is dynamically
extracted from the Source App, and (2) Test Migration, during
which the extracted data is used to generate the Target Test,
the Source Test’s equivalent on the target platform. The
remainder of this section details the two phases.

In developing MAPIT, we made several implementation deci-
sions driven by the third-party technologies on which we relied.
We highlight those whenever they are instrumental in enabling
a particular facet of MAPIT. Overall, MAPIT is implemented
in 4.5 KSLOC of Python, additionally integrating off-the-shelf
tools for mobile app monitoring, analysis, and testing.

A. Source Data Extraction

During the source data extraction phase, the Internal Test
Generator component first transforms the pre-existing Source
Test to the Internal Test, which is captured in MAPIT’s internal
representation for test cases. This internal representation is both
programming language- and testing framework-independent,
a critical requirement of cross-platform test transfer. Based
on the Internal Test, the App Explorer component gradually
generates a UI Transition Model, which consists of the
observed UI states of the app and the transitions between
them. Each transition represents one event (e.g., button click)
within the corresponding test case. The UI Transition Model

is generated by executing each event of the Internal Test on
the source platform, and dynamically extracting the requisite
information from the source app. We describe the Internal Test
Generator and App Explorer components in more detail next.

Internal Test Generator
As mentioned above, this component translates the Source

Test into the language- and platform-independent Internal
Test. Figure 3 illustrates this with an example of translating a
partial test of Etsy’s login functionality, written in Python for
the Appium testing framework [16] (Figure 3-a), to MAPIT’s
internal format (Figure 3-b). A test is represented internally
by MAPIT as a sequence of 4-tuple events, as defined in
Section II, with the event elements w, t, and o being optional.
Note that each widget w contains the information used to locate
this widget in the source test, such as accessibility id,
resource id, XPath, or coordinates. Thus w is represented as
a locator-type and its corresponding locator-value.

As a proof of concept, MAPIT currently includes support
for translating tests written in Python for Appium [16] and the
Robot [17] framework. These two frameworks are widely used
in mobile-app testing. The translation in each case is done
by mapping framework-specific tests to MAPIT’s internal
test representation through regular expression matching.
For instance, the first two lines of the Appium Python test
shown in Figure 3-a are matched by the regular expressions
‘‘.*driver.find_element_by_(.*)\(\"(.*)\"\)’’, and
‘‘el.*\.(.*)\( (.*)\)’’ respectively, and the action,
locator-type, locator-value, and input elements are
extracted from them to form the first event in MAPIT’s

el1 = Appium.webdriver.find_element_by_id("com.etsy.android:id/edit_password")
el1.send_keys("password")

     (a)    

el2 = Appium.webdriver.find_element_by_id("com.etsy.android:id/button_signin")
el2.click()
el3 = Appium.webdriver.find_element_by_accessibility_id("You tab, 4 of 5")
el3.click()
WebDriver.wait(Appium.webdriver,10).until(EC.visibility_of_element_located(By.id, 
"com.etsy.android:id/username"))

—————————————————————————
{"action": "keyboard input",
 "Widget": {"locator-type": "resourceId","locator-value": "com.etsy.android:id/edit_password"},
 "text-input": "password”}
{"action": "click",
 "Widget": {"locator-type": "resourceId","locator-value": "com.etsy.android:id/button_signin"}}
{"action": "click",
 "Widget":{"locator-type": "accessibilityId","locator-value": "You tab, 4 of 5" }}
{"action": "oracle",
 "Widget":{"locator-type": "id","locator-value": "com.etsy.android:id/username"}
 "oracle": "widget-displayed"}

(b)

Fig. 3: Translating (a) Etsy’s login test written in Python for
the Appium framework to (b) MAPIT’s internal representation.
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internal test format shown in Figure 3-b. This mechanism
can be easily extended to translate UI tests written in other
programming languages and/or for other testing frameworks.

App Explorer
As shown in Figure 2, the App Explorer component interacts

with a mobile device and gradually generates the UI Transition
Model of the Source App while executing the sequence of
Events in the Internal Test. Specifically, App Explorer consists
of three sub-components, as shown in Figure 4: Event Executor,
State Extractor, and Model Generator.

1) Event Executor: This sub-component is tasked with
initiating and maintaining an active connection with the mobile
device. It takes the Events from MAPIT’s Internal Test as input,
and transforms each event to the corresponding commands that
are transmitted to the device and executed. Event Executor uses
Appium [16] for device communication. In turn, Appium relies
on Android Debug Bridge [18], a tool for communicating with
Android devices, and Web Driver Agent [19], an interface for
remotely interacting with iOS devices.

2) State Extractor: For each event triggered by Event
Executor, State Extractor captures and processes the data
associated with the current device screen, in order to generate
the current UI State. A UI state S consists of (1) the app’s
current screenshot, (2) the graph representing the screen’s UI
layout hierarchy, and (3) all UI widgets that exist on the current
screen. Figure 5 shows an example of the UI state extracted
from the Etsy app at the beginning of a login test scenario.

Specifically, State Extractor first captures the bitmap of the
current screen (shown in the center of Figure 5) and extracts
its page source, which contains the screen’s UI information
as an XML hierarchy [20]. It then iterates through the UI
layout contained in the page source and builds a graph based
on the UI element hierarchy (shown on the left of Figure 5).
While iterating through the UI layout, State Extractor extracts
the boundaries of each UI widget and crops the captured
screenshot to get the image representing the widget on the
current screen. Also extracted and stored are each widget’s
descriptive attributes in the UI layout, such as resource id,
name, coordinates, element type, and whether it is interactable
(shown on the right of Figure 5). Finally, if the widget has any
visible text on its image, such text is captured using OCR. To
this end, we leveraged the Tesseract OCR engine [21].

3) Model Generator: App Explorer’s third sub-component
incrementally generates a UI transition model (UITM), based on

the UI States extracted from State Extractor (e.g., recall Figure
5)) and their corresponding Events obtained from Internal Test
Generator (recall Figure 2). UITM is a linear FSM representing
the transitions in the app taken while executing each event.
UITM has no back transitions: app state associated with a given
screen is captured separately each time the screen is visited.

Specifically, UITM(A, T ) is the transition model of app A
associated with UI test case T , which is a sequence of events
e1, e2, ..., en. The initial UI state of the app when executing T
is annotated as S0. Every state Si is reached by successfully
executing event ei in state Si−1. If the event sequence contains
n events, the UITM will contain n+ 1 states: S0, S1, ..., Sn.
Figure 6 shows the UITM extracted from the Android version
of Etsy, representing a login test case consisting of five events.
This UI transition model is a platform independent represen-
tation of the app under execution, and can be reused in other
cross-platform mappings involving closed-source apps. MAPIT
extracts and populates the model with more comprehensive
data from each state of an app compared to the corresponding
models offered by the existing approach that focuses on
extracting models from both iOS and Android apps [14].

B. Test Migration

In MAPIT’s second phase, the source test is migrated to the
target platform. This is done by transforming UITM(A, T ), ex-
tracted during the previous phase, into UITM(A′, T ′), where
A′ is the sibling app of A and T ′ is the test generated by MAPIT
to target the same functionality on A′ that T targeted on A.

Test migration is accomplished iteratively via three principal
components: App Explorer, Event Mapper, and Test Generator
(recall Figure 2). A high-level summary of this phase is
provided in Algorithm 1. UITM(A′, T ′) is initialized with
S′0, which is the initial state of the target app (Lines 1-3).
As depicted in Figure 2, this state is extracted using a second
instance of the App Explorer component discussed in the
previous phase; this instance of App Explorer is responsible
for interacting with the target device. For each state Si and
transition-triggering event ei+1 in UITM(A, T ), the Event
Mapper component finds the equivalent e′i+1 event in the
current state S′i on the target platform (Line 5). e′i+1 is
executed by App Explorer, resulting in the transition from
S′i to S′i+1 (Line 6). Additionally, e′i+1 is added to the target
test T ′ by the Test Generator component (Line 7). At this
point, S′i+1 becomes the current state and its corresponding
information will be extracted by App Explorer (Line 8), and
added to UITM(A′, T ′) as a new state connected to S′i via
the transition corresponding to e′i+1 (Lines 9-10). When the
final state of the source app’s model is reached, all events in
the source test have been migrated to the target platform.

Event Mapper is the core component of MAPIT. It dynami-
cally maps each event from the source platform to its equivalent
event that is executable in the current state of the target app. It
takes each state and event in the extracted UITM(A, T ) from
the previous phase, as well as the corresponding state in the
target app, and outputs the mapped event. Recall from Section
II that MAPIT supports the transfer of three types of events:
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Algorithm 1: High-Level Test Migration Process
Input: App A′, UI Transition Model UITM(A, T )
Output: Test T ′, UI Transition Model UITM(A′, T ′)

1 UITM(A′, T ′) = ∅;
2 S′

0 = extract current state(A′);
3 UITM(A′, T ′).add state(S′

0);
4 foreach (Si, ei+1) in UITM(A, T) do
5 e′i+1 = map event(Si, ei+1, S

′
i);

6 execute event(A′, e′i+1);
7 T ′.add event(e′i+1);
8 S′

i+1 = extract current state(A′);
9 UITM(A′, T ′).add state(S′

i+1);
10 UITM(A′, T ′).add transition(S′

i, S
′
i+1, e

′
i+1);

11 end

(1) UI, (2) oracle, and (3) system events. Correspondingly,
as shown in Figure 2, Event Mapper consists of UI Event
Mapper, Oracle Event Mapper, and System Event Mapper sub-
components. Mapping a source event is handled differently by
its corresponding mapper based on the event type. We now
detail each of these mappers. We will then elaborate on Test
Generator, the final component in MAPIT’s architecture.

UI Event Mapper
Recall that an event is a 4-tuple (a, w, t, o), some of whose

elements may be optional. All elements present in a given
event must be mapped from the source to the target platform.

For UI events, action type a can be click or keyboard

input. In both cases, a will be migrated to the target platform
as-is. For keyboard input actions, the event will also contain
text input t, which remains unchanged in the mapped event.

To map a source UI widget w to its most similar widget in the
current UI state of the target app, MAPIT leverages both visual
and textual information. As shown in Figure 7, it does so via
Visual Comparator, Textual Comparator, and Widget Selector
sub-components. By contrast, previous work has explored using
only textual [11], [5], [6], [8] or only visual [14] features of the
screen for widget mapping. In the ensuing discussion, we refer
to the combination of these three sub-components as UI Widget
Mapper, to distinguish them from the entire UI Event Mapper:

although a key function of UI Event Mapper is indeed the
mapping of UI widgets w, it is also responsible for mapping
the other elements of an event (a, t, o) to the target platform.

1) Visual Comparator: This sub-component extracts the
cropped image and coordinates of widget w from source app’s
state S, and all widgets that exist in target app’s current UI state
S′. It then calculates a visual similarity score with respect to w
for each widget of S′ and ranks the target widgets accordingly.

The intuition behind this component is that equivalent
widgets on different platforms tend to have very similar looks
by design. Visual similarity of two widgets is computed as the
weighted average of their (1) image, (2) screen location, and
(3) size similarities. Computing the latter two scores is relatively
straightforward. The proximity score of two widgets is com-
puted based on the Euclidean distance [22] of their locations
on the screen. The size similarity score is determined based on
the difference in widget sizes (normalized by the device size).

To compute the image similarity score, Visual Comparator
leverages the key points and feature descriptors extracted
from both the source and destination widget images. An
image’s key points are its pixels that have a prominent
difference of intensity with their adjacent pixels [23]. Feature
descriptors are numerical representations that encode data
about each key point’s neighborhood [23] and are used widely
for image comparison [24]. For detecting an image’s key
points and subsequently its feature descriptors we use ORB
[25] algorithm, which is an state-of-the-art image matching
technique that has shown to be highly efficient.

Once the sets of feature descriptors corresponding to source
and destination images have been obtained, Visual Comparator
computes the Hamming distance [26] for each pair of source
and destination descriptors. It then ranks the destination descrip-
tors for each source descriptor based on the computed distance.
Good matches between these two sets of descriptors are next de-
termined via Lowe’s ratio test [27], which is widely used in im-
age matching tasks. In this test, for each descriptor of the source

Fig. 5: UI state captured from Etsy’s login page. The two UI layout hierarchy elements highlighted on the left correspond to
the widget data shown on the right.

e5( a:oracle, 
w:“username”, 
o:“widget displayed” )

e4( a:click, 
w:“You” )

e3( a:click, 
w:“button sign in” )

e2( a:keyboard_input, 
w:“edit password”, 
t:“my password” )

e1:( a:keyboard_input, 
w:“edit username”, 
t:“my username” )

S0 S1 S2 S3 S4 S5

Fig. 6: UITM extracted from Etsy’s login test case. Each state S0-S5 is in the format shown in Figure 5.

5



S event:(a, w, t, o)

Mapped event

Widget Selector

Textual 
Comparator

Visual 
Comparator

UI Widget Mapper

Mapped UI widget

UI Event Mapper
(a, t, o)

(w)

UITM(A,T)

S’

Fig. 7: UI Event Mapper’s internal architecture.

image, the two closest matches among the destination descrip-
tors per the computed Hamming distance are selected. If the
value of distance( closest match )

distance( second closest match ) is less than a customiz-
able ratio, then the closest match is considered to be a good
match. We empirically explored different ratios, and set the
value to 0.8 in our evaluation reported in Section IV. At the end
of this process, each descriptor of the source image is labeled
as matched if it has a good matching destination descriptor.

Finally, Visual Comparator computes a normalized image
similarity score for each destination image with respect to
the source widget w. This score is calculated as the ratio
of matched source descriptors to the maximum number of
descriptors extracted from the source and destination images.

2) Textual Comparator: This sub-component determines
a textual similarity score between two widgets. It leverages
the widgets’ textual data from their respective UITMs ex-
tracted by MAPIT’s App Explorer (recall Section III-A). A
widget’s textual data consists of the values of its textual
attributes. These attributes are a subset of the information
extracted by State Extractor (recall Figure 4) for each widget
and include: (1) content descriptor, (2) resource id, and
(3) text, for the widgets on Android; and their iOS counterparts
(1) accessibility id, (2) name, and (3) label. Any text ex-
tracted from a widget’s image is also included in its textual data.

For illustration, in the Etsy example from
Figure 1, the textual data describing the ‘‘Sign In’’

button on Android (a3) is {content descriptor:-,

resource id:‘‘com.etsy.android:id/button_signin’’,

text:-, widget text:‘‘Sign In’’} while the textual
data describing the corresponding button on iOS (b3) is
{accessibility id:-, name:‘‘Sign in’’, label:‘‘Sign

in’’, widget text:‘‘Sign in’’}. Note that a UI widget
need not have all of the mentioned textual attributes. Also, the
values of multiple attributes may be identical. In the above
case, the Android widget (a3) does not have the content

descriptor attribute, while the values of name, label, and
widget text attributes for the iOS widget (b3) are the same.

Textual Comparator first pre-processes the extracted textual
data using common NLP practices, such as tokenization and
stop-word elimination. In addition to general-purpose stop-
words [28], we constructed a new list [15] of common stop-
words in widgets’ textual attributes that typically do not
convey meaningful information, such as ‘‘view’’, ‘‘bar’’,

and ‘‘container’’.
Textual Comparator computes a pairwise similarity score for

a given pair of source−target widgets’ textual attributes. It uses
Word2Vec [29] and the standard tf-idf formula [30] to transform
each textual attribute into its embeddings. The similarity score is
then calculated based on the embeddings’ cosine similarity [31].
Textual Comparator computes the similarity score of all pairs
of textual attributes regardless of their types (e.g., it will
compare text and accessibility id), to maximize the chance
of discovering similar widgets. The reason is that meaningful
textual values may be arbitrarily assigned to any attribute in
practice. The textual similarity score between two widgets is
then calculated as the highest cosine similarity score among the
textual attribute pairs. This process naturally filters out the simi-
larity scores calculated based on meaningless textual attributes.

As an example, the home button in Etsy on Android
has ‘‘com.etsy.android:id/menu_bottom_nav_home’’

as its resource id and ‘‘Home, tab 1 of 4’’ as its
accessibility id. The same button on iOS has ‘‘Home’’ as
its name and ‘‘1’’ as its value attribute. After the preprocess-
ing step, the textual attributes for the Android widget become
‘‘Home’’ and ‘‘menu bottom nav home’’, respectively.
While the cosine similarity between, e.g., ‘‘menu bottom nav

home" and ‘‘1’’ is very low (0.007), Android’s resource id

and iOS’s name are identical (‘‘Home’’). This means that the
textual similarity score between the two widgets is 1.0.

3) Widget Selector: UI Event Mapper’s third sub-component
selects the mapped UI widget based on the visual and textual
similarity scores. It does so by first checking the top-ranked
widgets based on the visual and textual similarity scores. If the
respective top-ranked widgets are the same, Widget Selector will
select this as the mapped widget. Otherwise, since the textual
data is more informative, Widget Selector first checks whether
the top-ranked widget in the textual similarity ranking has a
score higher than a given, adjustable threshold. If such a widget
w′ exists, then Widget Selector will first select all target widgets
whose textual similarity score is within an adjustable proximity
range of the textual similarity score of w′. These selected
widgets are considered as close textual matches. Widget Selector
will choose the widget with the highest visual similarity score
among the close textual matches. If no widget’s score is above
the specified textual similarity threshold, then the mapped
widget is the one with the highest visual similarity score.

At this point, the final mapped widget is checked for compati-
bility, based on whether its action type is supported on the target
device. If the mapped widget cannot support the transferred
action, Widget Selector will remove it from both rankings, and
then choose another UI widget based on the above process.

Oracle Event Mapper
This component is responsible for mapping all four elements

(a,w, o, t) of an oracle event. For these events, the action type a
that is oracle and oracle type o are always required, and are both
migrated to the target platform as-is. Mapping the other two
elements, w corresponding to the widget and t corresponding to
text, is more challenging. MAPIT handles the transfer of these
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two elements depending on the oracle’s type as detailed below.
As explained in Section II, we currently support several com-
mon types of oracles identified by prior work [5], [8]; MAPIT
can be easily extended to include additional oracle types. Table I
shows the oracle types currently supported by MAPIT, divided
into widget-independent and widget-dependent oracles. Note
that transferring test oracles is more challenging across plat-
forms than on a single platform since the supported oracle types
and widget attributes will differ across platforms. This requires
more challenging, heuristic-based mappings as detailed next.

The widget-independent oracle types currently supported
by MAPIT are text existence(txt) and text invisible(txt). These
oracles, respectively, check the presence and visibility of text
in the app’s current state. In representing these oracles via
MAPIT’s internal events, the value of the parameter txt is
captured by the oracle event’s element t. In these cases, the
text input txt of the source event will be transferred to the
target event as-is, and the presence or visibility of the same
text checked on the target platform.

The widget-dependent oracle types MAPIT currently
supports are widget exists(w), widget invisible(w), and
assert equal(w, attr, val). For this group of oracles, the
corresponding MAPIT events also contain the widget element
w, which is mapped by UI Widget Mapper as discussed above.

Transferring the widget invisible(w) oracle is more
challenging than widget exists(w). The reason is that the
widget w does not exist in the current state of the source
app and, therefore, it is not possible to extract the needed
data for the widget mapping process from the source UI state.
Instead, we hypothesized that in most test cases in which the
invisibility of a widget w is asserted, w is visible in some other
app state that is visited during the execution of the scenario
under test. Thus, for each widget invisible oracle in the source
test, the existence of its associated widget w is checked in all
states of the source app that are visited during the migration
process. If w is found in any state S on the source app, UI
Widget Mapper will search for its equivalent widget w′ in the
equivalent state S′ on the destination platform. After mapping
w, all remaining elements of the oracle event are mapped to
the target platform. If w is not found, its corresponding oracle
event will be marked as “not mappable” on the target test.

The assert equal(w, attr, val) oracle checks whether the value
of the attribute attr of widget w is equal to the asserted value
val. In this case, MAPIT captures the combination of attr
and val parameters as oracle event’s element t. Transferring
this oracle type is challenged by the differences in the widget
attributes maintained by iOS and Android. The only attribute
that exists on both platforms is enabled. Some widget attributes

Widget-independent Test Oracles
text existence(txt)
text invisible(txt)
Widget-dependent Test Oracles
widget exists(w)
widget invisible(w)
assert equal(w, attr, val)

TABLE I: Oracle types supported by MAPIT.

have different names but equivalent meanings. This includes
the attributes forming the previously discussed textual data and
their corresponding mappings, as well as Android’s visible

and iOS’s displayed attributes. Another group of attributes
can be mapped using heuristics. For instance, the selected and
checked attributes assess whether a widget (e.g., radio button,
tab) is selected/checked on Android. Although these two at-
tributes do not exist on iOS, developers usually denote a widget
being selected/checked by assigning 1 to its value attribute or
including the word “selected” in its accessibility id.

For other attributes (e.g., Android’s clickable), a mapping
is not possible. MAPIT transfers such assert equal(w, attr, val)
oracles to a not-mappable event on the destination platform.

System Event Mapper
For system events, MAPIT supports the action types enter

and back. For these events, only the action type a in the
4-tuple (a, w, t, o) has a value. If a is enter, it will remain
unchanged between the source and target events. The challenge
in transferring system events is that they may be handled
differently across platforms. An example is the transfer of a
back system event. A back is a system event on Android, but
no corresponding system event exists on iOS. Instead, iOS’s
equivalent would be a UI event with a widget that appears as
a “back” button on the app screen. We discuss how MAPIT
handles this event’s mapping in both directions.

When mapping from iOS to Android, MAPIT only has to
check whether the source event is indeed a back event. This
is done by checking whether the source event’s action type
a is click, and whether the textual attributes of its widget
w contain the keywords ‘‘back’’ or ‘‘previous’’.

The mapping from Android to iOS is more challenging since
it requires relating a system event to a UI event, where the latter
contains information not present in the former. To address this,
MAPIT internally introduces a virtual click event and an asso-
ciated back-button widget. This widget contains the bitmap of a
typical back button, with coordinates normalized by device size,
and relevant textual data to describe the button (e.g., the string
‘‘back button’’ as the value of the content descriptor

attribute). The normalized coordinates are calculated based
on the observation that, in most iOS apps, the back button is
located in the bottom-left corner of the screen. Finally, the
corresponding back button on iOS is identified by mapping this
virtual widget using UI Widget Mapper as discussed previously.

Test Generator
Finally, the Test Generator component generates a UI test for

the target platform based on the mapped events. The generated
test is in the Internal Test format discussed in Section III-A.

Generating tests is particularly challenging when the UI
widget w′ in a mapped event (a′, w′, t′, o′) does not con-
tain an attribute that can be used as a widget locator

(e.g., accessibility id or resource id). This information
is needed to identify a specific UI widget to trigger an event.
In such cases, MAPIT needs to generate a locator that is
understandable to the target device.
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There are two options to locate the target widget: (1) using
the widget’s coordinates or (2) using the widget’s XPath,
which is the ancestral path from the root of the UI layout
hierarchy [32]. We choose XPath because coordinates are
tied to a specific device, which would result in brittle tests that
are not executable on other devices. To automatically generate
the XPath locator for a target widget, Test Generator leverages
the UI layout hierarchy graph (recall Figure 5), which is
stored as part of the target app’s UITM (Figure 6). Specifically,
Test Generator traverses this graph until the mapped event
(a′, w′, t′, o′) is reached, and retrieves the XPath associated
with the target widget w′. The XPath is then stored as the
mapped event’s locator using Internal Test’s representation
discussed in Section III-A and depicted in Figure 3-b.

IV. EVALUATION

Our evaluation focuses on two key aspects of MAPIT: (1) its
accuracy in mapping events from a source to a target platform
and (2) usefulness of the tests it transfers. We first describe
our empirical setup and then present the evaluation results.

A. Evaluation Setup

MAPIT is not tied to a specific Android or iOS version
or device, and is only practically constrained by the tools on
which its implementation currently relies. Our evaluation was
performed on an iPhone 7 running iOS 14.4, and a Pixel 4
emulator running Android 11.0 installed on a macOS laptop
with 16GB RAM and 3.5GHz dual-core core i7 processor.

As discussed in the context of UI Event Mapper in
Section III-B, MAPIT has two adjustable parameters:
(1) textual similarity threshold and (2) proximity range. We
empirically determined the best performing values for these
parameters to be 0.5 and 0.1, respectively. Our results reported
in this section were obtained using these values.

Recall that, unlike the lone existing approach for cross-
platform test transfer [11], MAPIT does not require the apps’
source code. Since MAPIT targets the bi-directional transfer
of the same app across different platforms, we selected

popular apps that are available on both Android and iOS.
We first chose five different app categories: News, Shopping,
ToDo List, Web Browser, and Mail Client. We chose these
categories for two reasons: (1) they have a number of sibling
apps on iOS’s App Store and Android’s Google Play, and
(2) apps from these categories have been used to evaluate test
migration techniques previously [8], [3]. In each category, we
selected five frequently downloaded apps that are available
on both platforms, totaling 25 app pairs, shown in Table II.

Table III shows the test scenarios we used to evaluate
MAPIT. We selected the most common scenarios for each app
category as identified by prior work [8], [3] and subsequently
expanded the scenarios by further examining the subject
apps. For each app, we evaluated four scenarios. More than
four scenarios are shown in three of the categories because
a given scenario may not be applicable to all subject apps.
Within each scenario, we also identified a set of oracles, i.e.,
conditions that must hold true in the app at a given point.

To generate the test scripts for both Android and iOS
platforms, we manually trigger the events, including both UI
and system events, in each test scenario, and used Appium [16]
to record the process. Appium automatically converts the
recorded test scenarios to test scripts in the Robot framework
format [17]. These test scripts serve as both source tests to be
transferred from, and ground-truth tests to evaluate MAPIT’s
accuracy and usefulness. We manually added oracle events to
the tests after they were translated to MAPIT’s internal format
during the Source Data Extraction phase (recall Section III-A).
This was done because the employed Appium interface did not
allow us to automatically add the oracle events while recording
the tests. In the required manual process, we decided to add

News Shopping ToDo List Web Browser Mail Client
BBC Wish Google Tasks Chrome Gmail
CCN Etsy Microsoft To-Do Firefox Blue Mail

ABC News ebay Todoist DuckDuckGo Edison Mail
The Guardian Poshmark Any.do Brave Spark Mail
USA Today AliExpress My Tasks Edge Newton

TABLE II: Subject apps used for MAPIT’s evaluation.

News Shopping All CategoriesToDo List Mail ClientWeb Browser

Composite

Fig. 8: The accuracy of MAPIT’s event mapping across different app categories. Within each category, there are two clusters of
results: the left (unhighlighted) cluster represent the mapping from Android to iOS and the right (highlighted) from iOS to Android.
Within each cluster, the results are divided by mapping strategy: vision-only (left), text-only (middle), and composite (right).
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these events to the internal test rather than the original tests.
Note that while this decision may be a limitation of MAPIT’s
current implementation, it does not present a threat to MAPIT’s
validity or applicability: the same regular expression matching
algorithm used in Internal Test Generator can be leveraged
to translate oracle events from any format or language that
supports them to MAPIT’s internal representation.

We used MAPIT to transfer each test script from Android
to iOS and vice-versa. This yielded 200 transfer cases in total
(25 apps × 4 tests × 2 directions). Overall, our tests contain
828 UI events, 176 oracle events and 50 system events. This
averages to slightly over 5 events per test. Overall, the choices
we made in evaluating MAPIT (number of apps, tests, oracles,
and test sizes) are at least comparable to, and in several
instances significantly surpass, those reported in the emerging
literature on mobile-app test transfer [3].

Our approach does not require all tests to have oracle events
since in some cases the goal of usage-based tests is only
to confirm that a specific scenario can be executed on a
device without causing the app to crash. Therefore, we include
scenarios both with and without oracle events. This makes
our evaluation reflective actual usage-based testing in practice.
Furthermore, there was no notable difference between the
mapping accuracies for different types of events. This strongly
suggests that omitting oracle events from certain tests does not
impact the validity of our evaluation results.

B. Accuracy of Event Mappings

This part of our evaluation focuses on MAPIT’s ability
to correctly transfer a given app, oracle, or system event e
from a source test containing e to the corresponding event

Category Test Scenario

News

1) Save or bookmark specific news article
2) Navigate to specific category of news
3) Search for specific news topic
4) Personalize newsfeed based on news topics
5) Change edition
6) Follow author

Shop

1) Login to user account
2) Remove item from shopping cart
3) Navigate between product categories
4) Add item to shopping cart
5) Make wishlist
6) Filter products

ToDo

1) Add ToDo task
2) Remove ToDo task
3) Edit ToDo task
4) Change due date of ToDo task

Web

1) Access website by URL
2) Navigate to previous page
3) Navigate to new browser tab
4) Bookmark URL

Mail Client

1) Compose email
2) Search email by keyword
3) Move emails across folders
4) Archive existing email
5) Reply to email

TABLE III: The evaluated scenarios for each app category.

e′ in the target test. Specifically, this reflects the accuracy of
Event Mapper, MAPIT’s core component (recall Section III-B).

Measuring Event Mapper’s accuracy requires that we isolate
its impact from MAPIT’s remaining components. To explain
how we accomplish that, consider the following scenario. Si is
a state in the source app and S′j its equivalent state in the target
app. Event ei+1 is an event in the extracted UITM representing
a source test that takes the source app from Si to Si+1 (recall
Figure 6) . We evaluate whether Event Mapper is successful
in finding the correct mapping for ei+1 that will advance the
target app from state S′j to S′j+1.

To this end, we manually inspect each pair of sibling
apps and detect their equivalent states for each test scenario
based on the functionality they provide. We feed those
states alongside the source event to Event Mapper. Manually
detecting equivalent states in sibling apps was straightforward
in practice: in more than 95% of the cases in our subject apps,
there existed one-to-one mappings between the source and
target states, and they occurred in the same order (i.e., i = j).
This is consistent with our guiding hypothesis that sibling
apps will have highly similar functionalities by design.

The correctness of each source event’s mapping is determined
by manually comparing the transferred test and the ground-
truth test. Note that there can be multiple correct mappings for
a given source event. For example, the correct mapping of the
click event on widget a3 in Figure 1 can be a click on either
b3 or b4 since they both result in the same action.

MAPIT’s test transfer approach assumes that there exists
one-to-one mappings between UI states of the sibling apps.
However, in certain, rare cases the numbers of events that
represent the same test scenario will differ between the two
platforms. For example, Etsy’s login on iOS requires the user to
choose the account type first and then navigate to the main login
page, whereas on Android the user chooses the account type
on the login page itself. In the 100 test scenarios used in our
evaluation, we encountered only 8 such cases; this prevalence
(8%) is consistent with previously reported results [11]. Such
differences do not impact MAPIT’s event-mapping accuracy. In-
stead, mismatched UI states affect the usefulness of transferred
tests and are taken into account in Section IV-C below.

Recall from Section III that MAPIT introduces a combination
of visual and textual techniques for mapping events between
platforms. We thus also evaluate the benefits of this composite
mapping. Note that the sole previously existing cross-platform
test migration technique, TestMig, only employs textual
mapping [11]. Adding visual information was important in
our case since we target closed-source apps whose textual
information is limited due to the unavailability of app code.
We were unable to directly compare MAPIT’s accuracy with
TestMig for two reasons. First, TestMig requires access to
an app’s source code while the code of nearly all of our
subject apps is unavailable. Second, TestMig only supports
uni-directional transfer from iOS to Android.

Figure 8 shows the accuracy of our bi-directional event map-
ping in each app category, based on vision-only, text-only, and
composite mappings. With one exception, MAPIT’s composite
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mapper outperforms the other two strategies. The composite
mapper was able to accurately map events in over 3

4 of all cases
(see “All Categories” in Figure 8). No notable differences in
accuracy emerged when mapping UI, oracle, or system events.
Furthermore, these results are independent of the platform:
the overall results are separated by a single percentage point
between the Android-to-iOS and iOS-to-Android mappings.

The lone exception to the above trends is the iOS-to-Android
mapping of Web Browser apps. Our subsequent analysis
uncovered a likely reason and a possible remedy. Namely,
in MAPIT’s analysis of some of the browser apps, a textually
mapped widget would have been the correct widget to select,
but its textual similarity with the source widget was below the
threshold discussed in Section III-B. In those cases, the visually
mapped widget was chosen per the strategy adopted by MAPIT.
However, this was a flawed strategy because of the sibling apps’
layout differences. This suggests that the thresholds, which we
set across all apps, may need to be further tuned for different
app categories and possibly based on other criteria.

C. Usefulness of Transferred Tests

To assess how useful the tests transferred by MAPIT are, we
leverage a metric introduced by recent work [3], which measurs
the reduction in the manual effort required to accomplish a test-
transfer task. Specifically, the manual effort required after using
MAPIT is quantified as the number of steps needed to rectify
the incorrectly-mapped events in the transferred test, while the
effort without using MAPIT amounts to the number of steps
needed to write the entire ground-truth test from scratch. A
step can be an event’s insertion, deletion, or substitution [3].

To perform this evaluation, we provide MAPIT with the
binaries of sibling apps as well as a test script on the source
platform, and compare the transferred test to the ground truth
on the target platform. Recall from Section IV-B that there
may exist multiple correct mappings for a source event. For
this reason, we manually inspect each transferred test to verify
the correctly mapped events.

Figure 9, shows the average effort reduction across the
different subject-app categories. Overall, MAPIT reduces more
than half the manual effort required to write UI tests for a new
platform. Furthermore, the average reductions are similar in
the two transfer directions, indicating that MAPIT’s usefulness
is independent of the platform. In our evaluation, MAPIT

News Shopping ToDo List Web Browser Mail Client All Categories

Fig. 9: Effort reduction afforded by MAPIT. Result pairs within
each app category correspond to the mappings from Android
to iOS (left) and from iOS to Android (right, highlighted).

was able to achieve 100% reduction—eliminating all manual
effort—in 58 of 200 test cases (29%).

If we consider these results in tandem with those from
Figure 8, it is interesting to note that, in a number of instances,
MAPIT achieved high accuracy but relatively low reduction
(i.e., usefulness). Initially, this seemed counter-intuitive since,
in principle, accurate event mappings should result in high-
quality transferred tests. However, a more detailed analysis
uncovered that the incorrectly-mapped events in these cases are
rare, but they start appearing relatively early in a transferred
test. In turn, this leads a target app into an incorrect state early
during the test migration phase and causes it to “get lost” so
that all subsequent source events are also mapped incorrectly.

In a great majority of cases, these subsequent events would
have been mapped correctly if the app were in the correct
state (as can be confirmed by MAPIT’s complete accuracy
data [15]). In fact, 74 of the 200 test cases (37%) would only
have one incorrectly-mapped event if a correct app state were
reached. This strongly suggests that minor human effort has
the potential to improve MAPIT’s usefulness significantly.
For example, slightly “nudging” MAPIT in certain cases—by
manually providing a correct mapping of a single event or by
guiding the target app once to a correct state—would combine
these 74 cases with the 58 fully transferred test cases to raise
MAPIT’s reduction in effort to nearly zero in 2

3 of cases.
Another aspect of MAPIT’s usefulness we measured is

its performance. Although we have not optimized MAPIT
for speed, this aspect of our prototype is an indication of its
real-world applicability. On average, MAPIT’s Source Data
Extraction phase took 101 seconds and its Test Migration
phase took 217 seconds; in other words, the entire transfer
process averaged slightly over 5 minutes per test. In general,
MAPIT’s execution time depends on the number of events in
a test, as well as the complexity of an app’s screen layout at
each step of the execution. An average test in our evaluation
had 5 events, while each app screen averaged 25 widgets that
needed to be extracted and compared.

V. RELATED WORK

TestMig [11] is the lone existing approach for migrating tests
across platforms. However, TestMig only transfers tests from
iOS to Android and requires the source code of both source and
target apps. Other approaches in the mobile-app domain have
focused on migrating UI tests between different Android apps
within the same category. Behrang et al. [5], [6] and Lin et
al. [8] rely on static code analysis for extracting the GUI models
of the app, which are not available for closed-source iOS apps.
Mariani et al. [10] formulated the test reuse problem as a
search problem and used evolutionary testing to transfer tests
across different Android apps. Hu et al. [7] proposed a machine
learning-based approach for generating UI tests for an app using
a library of existing tests. This work generates regression tests
for a specific app rather than enabling test migration. Zhao
et al. [3] proposed a framework for automatically evaluating
the previous approaches, but did not specifically address test
migration. Mariani et al. [33] presented an empirical study
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on techniques for semantic matching of GUI events used by
existing test reuse approaches.

Beyond the mobile-app arena, Rau et al. [34] proposed
an approach for efficiently generating UI tests by learning
from the existing tests of other apps, but their work targets
web applications. Similarly, Yeh et al. [35] proposed an early
image-based platform-independent testing tool for testing
desktop and web applications. Finally, Mariani et al. [36]
proposed an approach that automatically exploits the common
functionalities of Java applications to generate UI tests.

Another related body of work focuses on remote app
execution. Yu et al.[14] proposed LIRAT, a record-and-replay
technique for executing scenarios across mobile platforms.
Their approach is based on image feature matching and UI
layout characterization. Compared to MAPIT’s composite
approach, using only visual features lowers the mapping
accuracy, especially in cases where the source and target apps
are not visually identical. Furthermore, leveraging textual data
using a technique such as Word2Vec, which focuses on the
semantics behind the data instead of the exact word matching,
makes MAPIT’s approach more suitable as a foundation for
cross-platform test transfer than LIRAT [14]. Another recent
approach [37], [38] enabled remote interaction with iOS devices
and dynamic extraction of partial app UI models. These
approaches do not generate a test case from an existing UI
test, but replay on a target device a specific scenario that was
recorded on a source device. Cross-platform test migration is
different from them in at least three important ways. (1) Actual
test cases must be human readable and modifiable. (2) Migrated
test cases include oracle events, which may in fact benefit
record-and-replay but are not considered by it. (3) Migrated
test cases are not device coordinate-dependent and can be
directly reused across devices on the same platform.

There is an emerging body of work that extracts UI models
from Android apps and uses them to guide testing. This may be
done statically [39], dynamically [2], [40], or by a combined
strategy [41], [42]. Our approach is platform-independent and
is, in principle, closer to dynamic approaches that do not
assume the existence of app code.

VI. LIMITATIONS AND DISCUSSION

MAPIT’s approach and current implementation have several
potential limitations. We discuss them in this section.

One limitation is presented by sibling apps whose events
are not related 1-to-1. Supporting 1-to-N event mappings is
especially challenging in bi-directional test transfer across
mobile platforms. This is because of an important difference
between Android and iOS. In Android, many reverse engi-
neering tools are available that can help to extract a complete
model of a closed-source app (e.g., Gator [13]). On the other
hand, no analogous mechanism exists for iOS, which makes it
challenging to predict possible future events in each state of a
closed-source iOS apps. Even though both our evaluation and
prior work indicate that sibling apps whose events have the
1-to-N relationships occur relatively infrequently, finding ways
to address this issue would further improve MAPIT’s utility.

MAPIT currently only supports clicks and keyboard inputs
as UI events. These two UI events are the most common types
of events. They are also more challenging to map than other
UI events since they are associated with UI widgets. MAPIT’s
underlying modular design makes it easily extensible to support
additional types of UI events, such as swiping and scrolling.
One strategy for doing so would be by introducing event-
specific heuristics. We will have to implement and evaluate
the effectiveness of such an approach.

Another limitation of MAPIT is its inability to extract
data (e.g., the UITM discussed in Section III-A) from certain
commercial apps. Our analysis of this problem identified four
potential reasons: (1) some apps may use obfuscation and make
certain UI elements inaccessible; (2) hybrid apps that combine
web and native code may not be analyzable by tools such as
Appium; (3) certain UI states may not allow data extraction
for security reasons (e.g., no screenshots may be taken on the
login screen); and (4) the execution of some tests requires
currently unrecognized types of action (e.g., scrolling). Some
of these (e.g., adding support for scrolling) are straightforward
extensions to MAPIT, but others (e.g., overcoming obfuscation)
present compelling research challenges.

Finally, as discussed in Section III-A, MAPIT currently
relies on regular expression matching for translating tests to
MAPIT’s internal representation. We have considered using
methods based on program analysis (e.g., AST parsing) for the
translation. However, we decided to use regular expressions
because they are fast and accurate, and most testing frameworks
have APIs that generate tests in a specific format. The
requirement that original tests be in a specific format can limit
the number of input tests MAPIT can handle. As a potential
remedy, MAPIT’s modular architecture makes it possible to
substitute the current Internal Test Generator component with
a more complex translator.

VII. CONCLUSION

Our work has demonstrated that it is viable to flexibly
transfer both individual app events and entire UI tests across
mobile platforms. This will serve as a foundation for a range of
follow-on activities in this area. Several of those will, naturally,
focus on improving MAPIT’s accuracy and usefulness, and on
addressing its current shortcomings. This may involve relaxing
some of our assumptions, such as taking advantage of code
when it is available. It may also involve leveraging MAPIT’s
modular architecture to introduce platform- or technology-
specific components when appropriate, as discussed above.
Future work will also require overcoming specific challenges
enumerated in Section VI that have not been our focus to date
for practical reasons.
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