
AirMochi – A Tool for Remotely Controlling iOS Devices

Nikola Lukić
University of Southern California

Los Angeles, USA

nlukic@usc.edu

Saghar Talebipour
University of Southern California

Los Angeles, USA

talebipo@usc.edu

Nenad Medvidović
University of Southern California

Los Angeles, USA

neno@usc.edu

ABSTRACT

This paper presents AirMochi, a tool that provides remote access

and control of apps by leveraging a mobile platform’s publicly

exported accessibility features. While AirMochi is designed to be

platform-independent, we discuss its iOS implementation. We show

that AirMochi places no restrictions on apps, is able to handle a va-

riety of scenarios, and imposes a negligible performance overhead.

https://youtu.be/rhPz2Hs4Ius https://github.com/nkllkc/air_mochi

ACM Reference Format:

Nikola Lukić, Saghar Talebipour, and Nenad Medvidović. 2020. AirMochi –

ATool for Remotely Controlling iOSDevices. In 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3324884.3415304

1 INTRODUCTION

The emergence of mobile platforms has resulted in millions of apps

that deliver services spanning virtually every human need and

endeavor. The providers of mobile platforms—Google’s Android

and Apple’s iOS most notably—have tried to make app building

easier for an inexperienced, even untrained, developer. However,

this has introduced a host of challenges, both for the consumers

and for developers. Namely, apps can have unexpected behaviors,

counter-intuitive features, bugs, unpredictable performance, se-

curity vulnerabilities, etc. This is magnified by the expectation

that apps on a mobile device will interact, not only with back-end

servers, but also with one another.

Existing work has looked at different facets of this problem,

such as testing apps’ behaviors, analyzing their performance, en-

suring adherence to license agreements, identifying and patching

vulnerabilities, recovering app designs, and reverse-engineering

implementations. Of particular interest to our work are techniques

that analyze and/or test apps on a device by remotely accessing and

controlling them. Examples include app record-and-replay [10], UI

event generation for apps running in an emulator [13], use-case

scenario extraction from screen recordings [8], and application of

OCR and computer-vision techniques to identify GUI widgets [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3415304

These techniques have invariably targeted Android, an open

platform that provides access to low-level details of an installed app

and its execution substrate. By contrast, iOS is a closed platform and

is much less amenable to such analyses: no analogous APIs, tools, or

emulators exist for it.1 Two solutions for remote app access/control

have been typically adopted on iOS. The first is to override certain

kernel-level restrictions by “jailbreaking” a device (e.g., [1]). How-

ever, jailbreaking an iOS device introduces security vulnerabilities

and results in platform and app versions that are considered illegal

by Apple [9]. The second solution is to use the XCUITest black-box

testing framework [3] and leverage low-level device-access proto-

cols currently exposed by Apple. However, use of these protocols is

not officially sanctioned by Apple and may be disabled in a future

iOS version. Additionally, both of these approaches are complex

and impose significant engineering burden.

In this paper, we present the design, implementation, and eval-

uation of AirMochi—Accessibility Interface Runner for Mobile

Open Computer-Human Interaction. AirMochi is a remote app

access/control tool that only leverages a mobile platform’s publicly

exported accessibility features, which are commonly provided to

facilitate the use of a device by persons with vision, hearing, and

other physical disabilities. While AirMochi’s design is platform-

independent, we demonstrate our solution on iOS, the significantly

more challenging of the two currently dominant mobile platforms.

We demonstrate AirMochi’s (1) effectiveness, (2) efficiency, (3) mod-

ularity, and (4) extensibility. Specifically, we show that AirMochi

places no restrictions on apps and is able to handle a variety of

representative scenarios. We also show that AirMochi imposes

a negligible performance overhead even though we have not at-

tempted to optimize its current implementation.

2 AIRMOCHI IN ACTION

Themanner inwhichAirMochi is intended to be used is reflected in

Figure 1. AirMochi’s user is able to start a remote-execution session

in the User-Facing Application, e.g., on a desktop computer (bottom-

right). During the session, the user is able to remotely control a

dedicated Mobile Device (bottom-left). Each session consists of a

stream of user-generated UI events flowing from the User-Facing Ap-

plication to the Mobile Device, and video stream comprising device

screens flowing in the opposite direction.

The user is able to seamlessly control the Mobile Device, us-

ing only the input peripheral devices on her side (e.g., mouse and

keyboard). Once the user generates a particular UI event in the

User-Facing Application, that event is routed to and executed on the

1Apple’s iOS simulators for MacOS require special simulator-based app builds.

1273

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Figure 1: AirMochi’s design. The dashed lines to and from

theMobile Device are intended to indicate that the Event Gen-

erator and Screen Transmitter components can reside on the

device itself or be deployed on a separate hardware node.

dedicatedMobile Device. The resulting video stream is captured from

the dedicated device in the form of a sequence of device-screens

and displayed, remotely, on the user’s side.

During a remote-execution session, the user can opt to record

certain usage scenarios of interest. Both the device-screen video

stream and UI event stream are persisted by AirMochi during

the recording. AirMochi’s user can analyze the event and screen

streams side-by-side, e.g., to debug an app. The user can alterna-

tively replay usage scenarios by re-executing the recorded UI events

on the Mobile Device. This allows rapidly bringing a mobile app

to a specific execution state, enabling further analysis, and testing

of the app. The video of the resulting replay and the previously

recorded video can also be compared to evaluate the correctness of

the replay, to assess whether a given app has changed, to analyze

the effects of any server-side changes on the app, etc.

3 AIRMOCHI’s DESIGN

Three of AirMochi’s over-arching design objectives are efficiency,

modularity, and extensibility. AirMochi’s design is primarily driven

by efficiency. To be usable in practice, AirMochi must support a

realistic usage experience in which there is no perceptible perfor-

mance degradation compared to the direct use of a mobile device.

Our solution must therefore minimize the latency when transmit-

ting event streams and device-screen video streams. This is reflected

in AirMochi’s design in (1) the limited number of software compo-

nents interceding between the user and the mobile device, thereby

avoiding connection and/or processing overloads; (2) the dedicated,

separate instances of key components for each execution session, as

detailed below; and (3) theminimal onlinemanipulation of the event

and device-screen streams between their sources and destinations.

Another design objective for AirMochi is modularity. As dis-

cussed above, there are several one-off solutions for recording and

replaying app executions. Although AirMochi currently targets

iOS devices by leveraging their accessibility interfaces in specific

ways (as further detailed in Section 4), one of our eventual goals

is to enable combining different approaches for screen streaming,

user-side event generation, and device control. To this end, Air-

Mochi comprises four top-level modules, as shown in Figure 1:

(1) User-Facing Application, (2) Utility Server , (3) Event Generator ,

and (4) Screen Transmitter . This allows us to add event genera-

tion and screen sharing solutions for different platforms quickly,

without significant engineering overhead.

This leads to extensibility as the final principal design objective

for AirMochi. In addition to leveraging AirMochi’s modularity in

order to extend it to different platforms as discussed above, its plug-

gable design makes it a suitable research foundation for easily intro-

ducing additional data collection and processing tools. By plugging

in components that implement the desired capabilities, AirMochi

will allow us perform downstream analyses such as runtime track-

ing of unwanted app scenarios, mapping of UI events to network

requests, detection of information-leaks on a mobile device, etc.

We now describe each of AirMochi’s components from Figure 1.

User-Facing Application

Each AirMochi user is provided a separate instance of the User-

Facing Application. During the execution of a user session, the

User-Facing Application receives a device-screen video stream from

theUtility Server , while capturing and streaming the user-generated

UI events in the opposite direction. The User-Facing Application is in

charge of notifying the Utility Server of the start and end of stream

recording. Finally, when replaying previously recorded sessions,

the User-Facing Application only displays theMobile Device’s screen

video stream, without attempting to capture user events.

Utility Server

The Utility Server is the main orchestrator of remote device con-

trol. It is in charge of establishing and persisting the connections

between users and devices. As shown in Figure 1, the Utility Server

itself consists of three components: (1) Screen Transmission Facilita-

tor , (2) Event Transmission Facilitator , and (3) Internal Storage.

The Screen Transmission Facilitator is in charge of establishing

the video stream from a Mobile Device and its corresponding User-

Facing Application instance. As discussed previously, video streams

are captured as sequences of device-screens. The Screen Transmission

Facilitator may need to modify the stream to accommodate specific

User-Facing Application requirements.

The Event Transmission Facilitator also establishes a connection

between a Mobile Device and its corresponding User-Facing Appli-

cation, but is in charge of transmitting user events from AirMochi

to the device. Furthermore, the Event Transmission Facilitator is in

charge of re-executing recorded execution scenarios.

Finally, the Internal Storage component is used by both facilitator

components. The Screen Transmission Facilitator uses it to store

screen frames from the device’s video stream. The Event Transmis-

sion Facilitator uses it to read in the scenario that is to be replayed

and to persist the UI event log when recording an ongoing scenario.

Event Generator

The Event Generator supplies UI events to the physically connected

Mobile Device. It receives each UI event using an internal AirMochi

representation, translates the event to the device-specific represen-

tation, and initiates the event’s execution on the connected device.

As discussed above, to support efficiency, each device is assigned a

dedicated instance of the Event Generator component.

1274

Screen Transmitter

In response to the execution of UI events, the Screen Transmitter be-

gins capturing theMobile Device’s video frames as screen sequences

and pushing them to the Utility Server via the connection previously

established by the Screen Transmission Facilitator . As with the Event

Generator , there is one instance of Screen Transmitter per device.

4 AIRMOCHI’s IMPLEMENTATION

AirMochi is implemented in ≈2500 SLOC, spanning six program-

ming languages with modules running on three different hardware

platforms. The Utility Server from Figure 1 is an HTTP server im-

plemented in NodeJS. For simplicity, this server also hosts the User-

Facing Application in our current implementation. The Event Gener-

ator is running on a Raspberry Pi Zero single-board computer. In the

implementation reported in this paper, the Screen Transmitter com-

ponent is running on theMobile Device itself and is implemented as

a native iOS application; recall from the above discussion that the

Screen Transmitter can also be remote from the device. More detailed

explanations about each of these modules are presented next.

User-Facing Application

A screenshot of theUser-Facing Application is shown in Figure 2. The

User-Facing Application combines HTML5 and multiple JavaScript

frameworks and libraries, mainly: Twilio Video [7], which is an in-

stantiation of theWebRTC real-time communication framework [4];

jQuery; and SocketIO. The User-Facing Application captures and

displays device-screen streams, captures UI events generated on

top of the video stream DOM element, and sends the generated

events to the Utility Server (recall Figure 1). The User-Facing Ap-

plication is hosted on the same node as the Utility Server in our

current implementation of AirMochi.

Utility Server

We implemented the Utility Server from Figure 1 as a NodeJS ap-

plication that communicates with AirMochi’s Screen Transmitter ,

Event Generator , and User-Facing Applicationmodules throughWeb-

Sockets and HTTP requests.

Since we are relying on Twilio Video’s WebRTC implementation,

the Utility Server’s Screen Transmission Facilitator component is

implemented as an off-the-shelf functionality. The Utility Server is

in charge of the initial video stream set up, by distributing Twilio

Video’s access tokens needed for the establishment of the secure

Figure 2: Screenshot of theUser-FacingApplication remotely

controlling an iPhone 7s running the Amazon app.

connection between the Screen Transmitter (discussed below) and

the User-Facing Application.

The Event Transmission Facilitator is implemented as a Web-

Socket server that mediates messages between the Event Generator

(discussed below) and the User-Facing Application. The UI event

messages exchanged in that communication are encoded in JSON.

If session recording is in progress, the JSON messages are per-

sisted in the Internal Storage. The Internal Storage is implemented

as a set of JSON files, one for each recorded session.

Event Generator

iOS 13 introduced a new accessibility feature that allows users to

plug in standard peripheral devices—mouse and keyboard—and

control iPhones, iPads, and iPod touches. As shown in Figure 3, we

implement the Event Generator as a USB peripheral emulator that

physically connects to the iOS device, and is seen by the device as a

keyboard and a mouse. On the other end, the connection between

the Event Generator and the Utility Server is established through

WebSockets, where the Event Generator is a WebSocket client.

As mentioned above, we selected the Raspberry Pi Zero as the

Event Generator’s hardware platform. We did so because of its

ability to act as a USB peripheral and the availability of an of-the-

shelf Python implementation of the WebSocket client library for

its Raspbian operating system [6]. As shown in Figure 3, the Event

Generator is implemented using three layers: (1) Message Receiver,

(2) Message-to-Event Mapper, and (3) Event Executor.

TheMessage Receiver component implements aWebSocket client

and receives JSON-formatted event messages from theUtility Server .

Since those JSON messages do not have a 1-to-1 correspondence

with the mobile device events, they need to be translated by the

Message-to-Event Mapper component. For example, the iOS only

supports a relative mouse device. This means that we cannot gener-

ate a “screen touch” event at specific (𝑥,𝑦) coordinates on a device;

instead, we need to issue a series of low-level “move pointer” events

that will relocate the pointer from its original location to (𝑥,𝑦), and
follow it by a “click” event. Finally, the Event Executor component

executes thus generated events by writing byte arrays of specific

sizes to a binary file. This file represents the emulated USB device’s

buffer, from which the iOS device reads.

Screen Transmitter

After an extensive search for the solution that yields the best video

capture and streaming performance, we opted for developing the

Screen Transmitter as a native iOS app that relies on several different

Figure 3: AirMochi’s Event Generator is implemented by

leveraging the iOS Accessibility Features.

3

1275

frameworks. For increased flexibility, we have implemented the

Screen Transmitter app in both Swift and Objective-C.

Device-screen capture is based on Apple’s native ReplayKit

framework [2]. Specifically, it is implemented as a Broadcast Upload

application extension. This is Apple’s recommended way of imple-

menting screen-sharing functionality, since it is the only way an

app running in the background can acquire the screen. The trans-

mission of acquired video frames is achieved through WebRTC, a

real-time communication framework. Since the generic implemen-

tation ofWebRTC lacks off-the-shelf support for iOS screen sharing,

we used a specific instantiation of WebRTC, Twilio Video [7].

On application start-up, the Screen Transmitter acquires the

Twilio Video access token from the Utility Server (recall Figure 1)

and tries to connect to the video stream with the received token. If

the token is valid and the network connection stable, a stream is

opened. At this point, iOS starts publishing video frames that we are

capturing using the above-discussed Broadcast Upload extensions’s

callback. WebRTC allows control over the frame sizes. For example,

since newer iOS devices are of very high resolution, AirMochi

can downscale the frames’ sizes when used on slower networks to

ensure adequate user experience. Finally, the captured frames are

pushed to the video stream using the Twilio Video WebRTC API.

5 PRELIMINARY EVALUATION

The primary objective of our work to date has been to explore

different technologies that can be leveraged to build a solution

that relies only on publicly available device-accessibility features.

We discussed above how AirMochi’s design has aimed to address

our goals of efficiency, modularity, and extensibility. This section

describes our empirical evaluation of AirMochi’s effectiveness and

efficiency. We focus on two aspects of effectiveness: (1) applicability

to different mobile apps and scenarios and (2) accuracy. We evaluate

efficiency in terms of the latency introduced by AirMochi.

As a demonstration of AirMochi’s applicability, we selected ten

of the most widely used Apple App Store apps: Amazon, Costco,

Facebook, Instagram, Messenger, Netflix, Snapchat, TikTok, You-

Tube, and Zoom. We executed a variety of usage scenarios on these

apps, ranging from 12 to 48 UI events. To measure AirMochi’s

device-screen streaming performance, we monitored the video

stream latency, i.e., the time elapsed between capturing a frame on

the Mobile Device and displaying it in the User-Facing Application

(recall Figure 1). AirMochi’s video stream latency across the dif-

ferent scenarios and apps was on average 248ms, with all samples

falling between 200ms and 300ms.

From the end-user’s perspective, AirMochi’s latency is virtu-

ally imperceptible since the use of our subject apps involves a fair

amount of “user think time” [11], which is on the order of seconds.

However, AirMochi would need to reach near-real-time respon-

siveness if we wanted to use it with highly interactive applications

such as games [5]. We believe that this is achievable since Air-

Mochi’s current, “proof of concept” implementation has not been

optimized. We see opportunities for performance improvements

by tailoring AirMochi’s streaming protocol to fit the nature of

specific use cases, by targeted uses of image downsampling, and by

employing unidirectional video streaming rather than the general

video conferencing currently supported by Twilio Video.

To evaluate AirMochi’s accuracy, we define True Positives as

events that are generated in the User-Facing Application, received by

the Event Generator , and executed successfully on theMobile Device

(recall Figure 1). False Negatives are events generated in the User-

Facing Application and received by the Event Generator , but not

successfully executed on the device. Finally, False Positives are

either events that are never generated in the User-Facing Application

but are somehow executed on the device, or events that are executed

out of the original order in which they were generated. We have not

come across either of the False Positives cases throughout our

use of AirMochi, meaning that AirMochi’s Precision is 100%.

On the other hand, AirMochi’s Recall is not perfect. We manu-

ally generated over 200 events across the ten subject apps and used

them in a large number of scenarios. The events were of different

types, such as keyboard inputs, taps, double taps, and swipes. We

found that a small number of generated events were not executed

on the Mobile Device, yielding the Recall of just above 96%. The

events in question tended to be dropped regardless of whether they

were generated manually in the User-Facing Application or by the

Utility Server when replaying a scenario.

We have identified the low-level event processing in AirMochi’s

implementation (recall Figure 3) as the likely cause of the dropped

events. Namely, certain events are simpler than others. For example,

keyboard inputs result in just one byte being written by the Rasp-

berry PI Zero, which acts as theMobile Device’s USB peripheral. Key-

board inputs did not result in False Negatives in any of our tests.

On the other hand, events such as taps and swipes are represented

as series of bytes and do result in occasional False Negatives.
We believe that the hardware limitations of the Raspberry Pi Zero

are the potential reason for the dropped events. We continue to

explore hardware platforms that may give us better results without

sacrificing AirMochi’s other desired properties.

6 CONCLUSION

Remote access to mobile devices is attractive for a range of reasons.

Different solutions have tended to trade-off certain objectives and

resulting properties for others. This has been especially the case

with iOS, where the available solutions use various strategies to

bypass the tight controls imposed on the platform by Apple. Air-

Mochi has demonstrated that it is viable to use only the public

accessibility APIs to control an iOS device. While AirMochi has

been designed and implemented as a generally applicable proof-of-

concept, we believe that it can be tailored and optimized for a host

of specific scenarios. We identified several such scenarios above.

Our future work will also include combining AirMochi’s record-

and-replay capabilities with image processing, to identify an app’s

UI elements and support automated testing. This will allow us to

rapidly analyze an app’s dynamic properties, extract use-cases from

the acquired execution data, pinpoint the root causes of bugs, build

high-fidelity behavior models of closed-source apps, and ultimately

reverse-engineer entire apps.

7 ACKNOWLEDGMENTS

This work is supported by the U.S. National Science Foundation

under grants 1717963 and 1823354, and U.S. Office of Naval Research

under grant N00014-17-1-2896.

1276

REFERENCES
[1] 2014. Veency, Cydia. https://cydia.saurik.com/info/veency/
[2] 2017. ReplayKit: Apple Developer Documentation. https://developer.apple.com/

documentation/replaykit
[3] 2017. User Interface Testing - Apple Developer. https://developer.apple.

com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_
xcode/chapters/09-ui_testing.html

[4] 2018. WebRTC. https://webrtc.org/
[5] 2019. Wowza - 2019 Video Streaming Latency Report. https://www.wowza.com/

blog/2019-video-streaming-latency-report
[6] 2020. Raspberry Pi OS (previously called Raspbian). https://www.raspberrypi.

org/downloads/raspbian/
[7] 2020. Twilio Video: Video SDKs for iOS, Android, JavaScript and web-based

video. https://www.twilio.com/video

[8] C. Bernal-Cárdenas et al. 2020. Translating Video Recordings of Mobile App
Usages into Replayable Scenarios. arXiv preprint arXiv:2005.09057 (2020).

[9] D. Geist, M. Nigmatullin, and R. Bierens. 2016. Jailbreak/Root Detection Evasion
Study on iOS and Android. MSc System and Network Engineering (2016).

[10] Wing Lam et al. 2017. Record and replay for android: Are we there yet in industrial
cases?. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 854–859.

[11] J. W. Mickens, J. Elson, J. Howell, and J. Lorch. 2010. Crom: Faster Web Browsing
Using Speculative Execution. In 2010 USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Vol. 10. 9–9.

[12] T. A. Nguyen and C. Csallner. 2015. Reverse Engineering Mobile Application User
Interfaces with REMAUI (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 248–259.

[13] Z. Qin, Y. Tang, E. Novak, and Q. Li. 2016. MobiPlay: A Remote Execution
Based Record-and-Replay Tool for Mobile Applications. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). 571–582.

1277

